2016 SATU Joint Research Scheme Program
Host Application Form

Date: 2016 / 04 / 25 (year / month / day)

1. Host University
 University of Malaya

2. Host Unit
 Department of Mechanical Engineering

3. Joint Research Project Title
 Thermal Characteristic and Entropy Efficiency of Nanofluids In Solar Collector System

4. Principal Investigator
 Passport Name: Dr. Ong Hwai Chyuan
 Nationality: Malaysian
 Gender: M
 Address: Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
 Telephone: (Office) +603-7967 5247 (Home / Mobile) 016-5903110
 Fax Number: +603-7967 5317
 E-mail: onghc@um.edu.my

5. Co-PI from the same unit – If any
 Passport Name
 Nationality
 Gender: M
 Address
 Telephone: (Office) (Home / Mobile)
 Fax Number
 E-mail

6. Project Details
 Project Description: Nanofluids are new innovative fluids that can be used as carries fluids. Nanofluids exhibits enhanced or modified thermos-physical properties such as thermal conductivity, convective heat transfer coefficient, viscosity and thermal diffusivity compared to base fluids. By adding the
nanoparticle into base fluid can significantly enhance thermo-physical mass diffusivity and radioactive heat transfer properties of fluid. A small amount of nanoparticles in base fluid can significantly improve the thermal efficiency. Due to these inherent characteristics, nanofluids are getting increasing attention among scientists, researchers and engineers to develop and improve the systems based on nanofluids as a heat transporting and absorbing medium. This research is to improve and enhance the efficiency in solar collector application using GNP and GO nanofluids. Synthesis of water based GNP and GO nanofluids have been investigated and characterized. Dispersion quality of nanofluids is assured by additional synthesis process like acids treatment. Sedimentation effect of nanofluids with time length has been studied by sample visualization and TEM micrographs. The augmentative absorbance and thermal conductivity of nanofluids have been compared with pure water. Entropy generation analysis will be implemented for measuring the effectiveness of the flow passage design. Finally, application of nanofluids in solar thermal system will be investigated and studies.

7. Acknowledgement (Signed by the President or SATU representative to show recognition)

Please email satu@email.ncku.edu.tw before 2016.4.29 (Fri.) for application with the subject line: <2016 SATU JRS host application –School Name>. Thank you.